TG-1701 is a novel, orally available and covalently bound BTK inhibitor

Emmanuel Nastoupil1, Leonid Gorelik1, Rama Shmeis1, Henry Le1, Robert Nisch1, Dong Liu2, Jiayin Zhang2, Weikang Tao2, Lianshan Zhang3, Hari P. Miskin1, Peter Sportelli1 and Michael S. Weiss1

Background

- **Targeting BTK**: BTK is a tyrosine kinase (BTK), an essential component of the BCR signaling pathway, has been demonstrated to be an effective treatment option for B-cell malignancies and autoimmune diseases. However, new BTK inhibitors are needed to allow for better safety and efficacy as a single agent and in combination with other agents.

- **Aims**: We present TG-1701, a novel, orally available and covalently bound BTK inhibitor that exhibits unique pharmacologic properties compared to prior BTK inhibitors.

Methods

- **In vitro pharmacodynamic activity of TG-1701**: The selectivity, kinase selectivity, and in vitro kinase activity of TG-1701 were assessed.

- **In vivo pharmacodynamic activity of TG-1701**: The selectivity, kinase selectivity, and in vivo kinase activity of TG-1701 were assessed.

- **Occupancy assay**: In vitro occupancy was determined using a gamma receptor occupancy assay.

- **Kinase selectivity**: Kinase selectivity was determined using an enzyme activity assay.

- **In vitro and in vivo Pharmacology**: In vitro and in vivo pharmacology data are provided.

- **Clinical perspective**: Potential for TG-1701 Use in Combination with other agents.

In vitro selectivity

- **Kinase selectivity (IC50)**
 - BTK: 0.22 nM
 - ABL: > 3000 nM
 - Erk: 0.8 nM
 - JNK: 147 nM
 - JAK2: 250 nM
 - FGFR1: 200 nM
 - PDGFR: 72 nM
 - Erk1/2: 30 nM
 - PLC-γ: 2 nM

Pathway inhibition

- **BTK inhibition**: BTK inhibition was determined in a cell-based assay using a phospho-specific antibody.

Pathway inhibition

- **BTK inhibition**: BTK inhibition was determined in a cell-based assay using a phospho-specific antibody.

In vivo pharmacodynamic activity of TG-1701

- **Occupancy assay**: In vivo occupancy was determined using a gamma receptor occupancy assay.

Clinical perspective

- **Potential for TG-1701 Use in Combination with other agents.**

Conclusions

1. TG-1701 is a novel, specific and covalent BTK inhibitor, more selective than Brutinib toward a panel of kinases including EGFR.
2. Occupancy assay in vitro and in vivo suggest that 0% occupancy can be reached using 100 mg/kg dose in human dose escalation clinical trial.
3. TG-1701 reduced the phosphorylation of BTK and other kinases downstream the BTK pathway, demonstrating a strong growth inhibitory activity against a set of lymphoma cell lines (data not shown) and inhibits PLC-γ-dependent calcium release.
4. TG-1701 demonstrated similar antitumor efficacy to Brutinib and acalabrutinib.
5. PK profile allows for a once-a-day dosing, TG-1701 is not a CYP inhibitor, and possesses a favorable profile for combination (data not shown).
6. In vivo, a 10 mg/kg dose escalation has started in China.
7. TG-1701 will be tested in combination with several TKIs including ibrutinib and umbralisib.